Sofin-credit.ru

Деньги и работа
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Суть регрессионного анализа

Суть регрессионного анализа

2 Можно указать два варианта рассмотрения взаимосвязей между двумя переменными и . В первом случае обе переменные считаются равноценными в том смысле, что они не подразделяются на первичную и вторичную (независимую и зависимую) переменные. Основным в этом случае является вопрос о наличии и силе взаимосвязи между этими переменными. Например, между ценой и объемом спроса на него, между урожаем картофеля и урожаем зерна, между интенсивностью движения транспорта и числом аварий. При исследовании силы линейной зависимости между такими переменными обращаются к корреляционному анализу, основной мерой которого является коэффициент корреляции. Вполне вероятно, что связь в этом случае вообще не носит направленного характера. Например, урожайность картофеля и зерновых обычно изменяются в одном и том же направлении, однако очевидно, что ни одна из этих переменных не является определяющей.

3 Другой вариант рассмотрения взаимосвязей выделяет одну из величин как независимую (объясняющую), а другую как зависимую (объясняемую). В этом случае изменение первой из них может служить причиной для изменения другой. Например, рост дохода ведет к увеличению потребления; рост цены — к снижению спроса; снижение процентной ставки увеличивает инвестиции; увеличение обменного курса валюты сокращает объем чистого экспорта и т.д. Однако такая зависимость не является однозначной в том, смысле, что каждому конкретному значению объясняющей переменной (набору объясняющих переменных) может соответствовать не одно, а множество значений из некоторой области. Другими словами, каждому конкретному значению объясняющей переменной (набору объясняющих переменных) соответствует некоторое вероятностное распределение зависимой переменной (рассматриваем как СВ). Поэтому анализируют, как объясняющая переменная(ые) влияет(ют) на зависимую переменную «в средним». Зависимость такого типа, выражаемая соотношением

5 называется функцией регрессии Y на X. При этом X называется независимой (объясняющей) переменной (регрессором), Y — зависимой (объясняемой) переменной. При рассмотрении зависимости двух СВ говорят о парной регрессии.

6 Зависимость нескольких переменных, выражаемая функцией

7 (1.2)

8 называют множественной peгрессией.

10 Термин «регрессия» (движение назад, возвращение в прежнее состояние) был введен Френсисом Галтоном в конце в XIX века при анализе зависимости между ростом родителей и ростом детей. Галтон заметил, то рост детей у очень высоких родителей в среднем меньше, чем средний рост родителей. У очень низких родителей, наоборот, средний рост выше. И в том, и в другом случае средний рост детей стремится (возвращается) к среднему росту людей в данном регионе. Отсюда и выбор термина, отражающего такую зависимость.

В настоящее время под регрессией понимается функциональная зависимость между объясняющими переменными и условными математическим ожиданием (средним значением) зависимой переменной, которая строится с целью предсказания (прогнозирования) этого среднего значения при фиксированных значениях первых.

Для отражения того факта, что реальные значения зависимой переменной не всегда совпадают с ее условными математическими ожиданиями и могут быть различными при одном и том же значении объясняющей переменной (наборе объясняющих переменных), фактическая зависимость должна быть дополнена некоторым слагаемым, которое, по существу, является СВ и указывает на стохастическую суть зависимости. Из этого следует, что связи между зависимой и объясняющей( ими) переменными выражаются соотношениями

(1.3)

называемыми регрессионными моделями (уравнениями).

Обсуждение регрессионных моделей на следующих лекциях поможет глубже изучить данное понятие.

Возникает вопрос о причинах обязательного присутствия в регрессионных моделях случайного фактора (отклонения). Среди таких причин выделим наиболее существенные.

1. Не включение в модель всех объясняющих переменных. Любая регрессионная (в частности, эконометрическая) модель является упрощением реальной ситуации. Последняя всегда представляет собой сложнейшее переплетение различных факторов из которых в модели не учитываются, что порождает отклонение реальных значений зависимой переменной от ее модельных значений. Например, спрос (Q) за товар определяется его ценой (Р), ценой (Рз) на товары заменитель, ценой (Рд) на дополняющие товары, доходов (I) потребителей их количеством (N), вкусами (N), ожиданиями :Q=f(P,Рз,Pд,I,N,T,W, ). Проблема еще и в том что никогда заранее не известно, какие факторы при создавшихся условиях действительно являются определяющими, а какими можно пренебречь. Здесь уместно отметить, что в ряде случаев учесть непосредственно какой-то фактор нельзя в силу невозможности получения по нему статистических данных.. Например, величина сбережений домохозяйств может определяться не только доходами их членов, но и, например, здоровьем последних, информация о котором в цивилизованных странах составляет врачебную тайну и не раскрывается. Кроме того, ряд факторов носит принципиально случайный характер (например, погода), что добавляет неоднозначности при рассмотрении некоторых моделей (например, модель, прогнози­рующая объем урожая).

2. Неправильный выбор функциональной формы модели. Из-за слабой изученности исследуемого процесса либо из-за его переменчивости может быть неверно подобрана функция, его моделирующая. Это, безусловно, скажется на отклонении моделиот реальности, что отразится на велечине случайного члена. Например, производственная функция (У) одного фактора (Х) может моделироваться функцией У == а + bХ, хотя должна была исследоваться другая модель: У = аХ b (0

Суть регрессионного анализа

2 Можно указать два варианта рассмотрения взаимосвязей между двумя переменными и . В первом случае обе переменные считаются равноценными в том смысле, что они не подразделяются на первичную и вторичную (независимую и зависимую) переменные. Основным в этом случае является вопрос о наличии и силе взаимосвязи между этими переменными. Например, между ценой и объемом спроса на него, между урожаем картофеля и урожаем зерна, между интенсивностью движения транспорта и числом аварий. При исследовании силы линейной зависимости между такими переменными обращаются к корреляционному анализу, основной мерой которого является коэффициент корреляции. Вполне вероятно, что связь в этом случае вообще не носит направленного характера. Например, урожайность картофеля и зерновых обычно изменяются в одном и том же направлении, однако очевидно, что ни одна из этих переменных не является определяющей.

3 Другой вариант рассмотрения взаимосвязей выделяет одну из величин как независимую (объясняющую), а другую как зависимую (объясняемую). В этом случае изменение первой из них может служить причиной для изменения другой. Например, рост дохода ведет к увеличению потребления; рост цены — к снижению спроса; снижение процентной ставки увеличивает инвестиции; увеличение обменного курса валюты сокращает объем чистого экспорта и т.д. Однако такая зависимость не является однозначной в том, смысле, что каждому конкретному значению объясняющей переменной (набору объясняющих переменных) может соответствовать не одно, а множество значений из некоторой области. Другими словами, каждому конкретному значению объясняющей переменной (набору объясняющих переменных) соответствует некоторое вероятностное распределение зависимой переменной (рассматриваем как СВ). Поэтому анализируют, как объясняющая переменная(ые) влияет(ют) на зависимую переменную «в средним». Зависимость такого типа, выражаемая соотношением

Читать еще:  Типы причинно следственного анализа

5 называется функцией регрессии Y на X. При этом X называется независимой (объясняющей) переменной (регрессором), Y — зависимой (объясняемой) переменной. При рассмотрении зависимости двух СВ говорят о парной регрессии.

6 Зависимость нескольких переменных, выражаемая функцией

7 (1.2)

8 называют множественной peгрессией.

10 Термин «регрессия» (движение назад, возвращение в прежнее состояние) был введен Френсисом Галтоном в конце в XIX века при анализе зависимости между ростом родителей и ростом детей. Галтон заметил, то рост детей у очень высоких родителей в среднем меньше, чем средний рост родителей. У очень низких родителей, наоборот, средний рост выше. И в том, и в другом случае средний рост детей стремится (возвращается) к среднему росту людей в данном регионе. Отсюда и выбор термина, отражающего такую зависимость.

В настоящее время под регрессией понимается функциональная зависимость между объясняющими переменными и условными математическим ожиданием (средним значением) зависимой переменной, которая строится с целью предсказания (прогнозирования) этого среднего значения при фиксированных значениях первых.

Для отражения того факта, что реальные значения зависимой переменной не всегда совпадают с ее условными математическими ожиданиями и могут быть различными при одном и том же значении объясняющей переменной (наборе объясняющих переменных), фактическая зависимость должна быть дополнена некоторым слагаемым, которое, по существу, является СВ и указывает на стохастическую суть зависимости. Из этого следует, что связи между зависимой и объясняющей( ими) переменными выражаются соотношениями

(1.3)

называемыми регрессионными моделями (уравнениями).

Обсуждение регрессионных моделей на следующих лекциях поможет глубже изучить данное понятие.

Возникает вопрос о причинах обязательного присутствия в регрессионных моделях случайного фактора (отклонения). Среди таких причин выделим наиболее существенные.

1. Не включение в модель всех объясняющих переменных. Любая регрессионная (в частности, эконометрическая) модель является упрощением реальной ситуации. Последняя всегда представляет собой сложнейшее переплетение различных факторов из которых в модели не учитываются, что порождает отклонение реальных значений зависимой переменной от ее модельных значений. Например, спрос (Q) за товар определяется его ценой (Р), ценой (Рз) на товары заменитель, ценой (Рд) на дополняющие товары, доходов (I) потребителей их количеством (N), вкусами (N), ожиданиями :Q=f(P,Рз,Pд,I,N,T,W, ). Проблема еще и в том что никогда заранее не известно, какие факторы при создавшихся условиях действительно являются определяющими, а какими можно пренебречь. Здесь уместно отметить, что в ряде случаев учесть непосредственно какой-то фактор нельзя в силу невозможности получения по нему статистических данных.. Например, величина сбережений домохозяйств может определяться не только доходами их членов, но и, например, здоровьем последних, информация о котором в цивилизованных странах составляет врачебную тайну и не раскрывается. Кроме того, ряд факторов носит принципиально случайный характер (например, погода), что добавляет неоднозначности при рассмотрении некоторых моделей (например, модель, прогнози­рующая объем урожая).

2. Неправильный выбор функциональной формы модели. Из-за слабой изученности исследуемого процесса либо из-за его переменчивости может быть неверно подобрана функция, его моделирующая. Это, безусловно, скажется на отклонении моделиот реальности, что отразится на велечине случайного члена. Например, производственная функция (У) одного фактора (Х) может моделироваться функцией У == а + bХ, хотя должна была исследоваться другая модель: У = аХ b (0

Основы анализа данных

Регрессионный анализ

Основная особенность регрессионного анализа: при его помощи можно получить конкретные сведения о том, какую форму и характер имеет зависимость между исследуемыми переменными.

Последовательность этапов регрессионного анализа

Рассмотрим кратко этапы регрессионного анализа.

  1. Формулировка задачи. На этом этапе формируются предварительные гипотезы о зависимости исследуемых явлений.
  2. Определение зависимых и независимых (объясняющих) переменных.
  3. Сбор статистических данных. Данные должны быть собраны для каждой из переменных, включенных в регрессионную модель.
  4. Формулировка гипотезы о форме связи (простая или множественная, линейная или нелинейная).
  5. Определение функции регрессии (заключается в расчете численных значений параметров уравнения регрессии)
  6. Оценка точности регрессионного анализа.
  7. Интерпретация полученных результатов. Полученные результаты регрессионного анализа сравниваются с предварительными гипотезами. Оценивается корректность и правдоподобие полученных результатов.
  8. Предсказание неизвестных значений зависимой переменной.

При помощи регрессионного анализа возможно решение задачи прогнозирования и классификации. Прогнозные значения вычисляются путем подстановки в уравнение регрессии параметров значений объясняющих переменных. Решение задачи классификации осуществляется таким образом: линия регрессии делит все множество объектов на два класса, и та часть множества, где значение функции больше нуля, принадлежит к одному классу, а та, где оно меньше нуля, — к другому классу.

Задачи регрессионного анализа

Рассмотрим основные задачи регрессионного анализа: установление формы зависимости, определение функции регрессии , оценка неизвестных значений зависимой переменной.

Установление формы зависимости.

Характер и форма зависимости между переменными могут образовывать следующие разновидности регрессии:

  • положительная линейная регрессия (выражается в равномерном росте функции);
  • положительная равноускоренно возрастающая регрессия;
  • положительная равнозамедленно возрастающая регрессия;
  • отрицательная линейная регрессия (выражается в равномерном падении функции);
  • отрицательная равноускоренно убывающая регрессия;
  • отрицательная равнозамедленно убывающая регрессия.

Однако описанные разновидности обычно встречаются не в чистом виде, а в сочетании друг с другом. В таком случае говорят о комбинированных формах регрессии.

Определение функции регрессии.

Вторая задача сводится к выяснению действия на зависимую переменную главных факторов или причин, при неизменных прочих равных условиях, и при условии исключения воздействия на зависимую переменную случайных элементов. Функция регрессии определяется в виде математического уравнения того или иного типа.

Читать еще:  Предмет и задачи экономического анализа

Оценка неизвестных значений зависимой переменной.

Решение этой задачи сводится к решению задачи одного из типов:

  • Оценка значений зависимой переменной внутри рассматриваемого интервала исходных данных, т.е. пропущенных значений; при этом решается задача интерполяции.
  • Оценка будущих значений зависимой переменной, т.е. нахождение значений вне заданного интервала исходных данных; при этом решается задача экстраполяции.

Обе задачи решаются путем подстановки в уравнение регрессии найденных оценок параметров значений независимых переменных. Результат решения уравнения представляет собой оценку значения целевой (зависимой) переменной.

Рассмотрим некоторые предположения, на которые опирается регрессионный анализ.

Предположение линейности, т.е. предполагается, что связь между рассматриваемыми переменными является линейной. Так, в рассматриваемом примере мы построили диаграмму рассеивания и смогли увидеть явную линейную связь. Если же на диаграмме рассеивания переменных мы видим явное отсутствие линейной связи, т.е. присутствует нелинейная связь, следует использовать нелинейные методы анализа.

Предположение о нормальности остатков . Оно допускает, что распределение разницы предсказанных и наблюдаемых значений является нормальным. Для визуального определения характера распределения можно воспользоваться гистограммами остатков .

При использовании регрессионного анализа следует учитывать его основное ограничение. Оно состоит в том, что регрессионный анализ позволяет обнаружить лишь зависимости, а не связи, лежащие в основе этих зависимостей.

Регрессионный анализ дает возможность оценить степень связи между переменными путем вычисления предполагаемого значения переменной на основании нескольких известных значений.

Уравнение регрессии выглядит следующим образом: Y=a+b*X

При помощи этого уравнения переменная Y выражается через константу a и угол наклона прямой (или угловой коэффициент) b, умноженный на значение переменной X. Константу a также называют свободным членом, а угловой коэффициент — коэффициентом регрессии или B-коэффициентом.

В большинстве случав (если не всегда) наблюдается определенный разброс наблюдений относительно регрессионной прямой.

Остаток — это отклонение отдельной точки (наблюдения) от линии регрессии (предсказанного значения).

Для решения задачи регрессионного анализа в MS Excel выбираем в меню Сервис «Пакет анализа» и инструмент анализа «Регрессия». Задаем входные интервалы X и Y. Входной интервал Y — это диапазон зависимых анализируемых данных, он должен включать один столбец. Входной интервал X — это диапазон независимых данных, которые необходимо проанализировать. Число входных диапазонов должно быть не больше 16.

На выходе процедуры в выходном диапазоне получаем отчет, приведенный в таблице 8.3а — 8.3в.

Сначала рассмотрим верхнюю часть расчетов, представленную в таблице 8.3а, — регрессионную статистику.

Величина R-квадрат , называемая также мерой определенности, характеризует качество полученной регрессионной прямой. Это качество выражается степенью соответствия между исходными данными и регрессионной моделью (расчетными данными). Мера определенности всегда находится в пределах интервала [0;1].

В большинстве случаев значение R-квадрат находится между этими значениями, называемыми экстремальными, т.е. между нулем и единицей.

Если значение R-квадрата близко к единице, это означает, что построенная модель объясняет почти всю изменчивость соответствующих переменных. И наоборот, значение R-квадрата , близкое к нулю, означает плохое качество построенной модели.

В нашем примере мера определенности равна 0,99673, что говорит об очень хорошей подгонке регрессионной прямой к исходным данным.

множественный R — коэффициент множественной корреляции R — выражает степень зависимости независимых переменных (X) и зависимой переменной (Y).

Множественный R равен квадратному корню из коэффициента детерминации, эта величина принимает значения в интервале от нуля до единицы.

В простом линейном регрессионном анализе множественный R равен коэффициенту корреляции Пирсона. Действительно, множественный R в нашем случае равен коэффициенту корреляции Пирсона из предыдущего примера (0,998364).

Теперь рассмотрим среднюю часть расчетов, представленную в таблице 8.3б. Здесь даны коэффициент регрессии b (2,305454545) и смещение по оси ординат, т.е. константа a (2,694545455).

Исходя из расчетов, можем записать уравнение регрессии таким образом:

Направление связи между переменными определяется на основании знаков (отрицательный или положительный) коэффициентов регрессии (коэффициента b).

Если знак при коэффициенте регрессии — положительный, связь зависимой переменной с независимой будет положительной. В нашем случае знак коэффициента регрессии положительный, следовательно, связь также является положительной.

Если знак при коэффициенте регрессии — отрицательный, связь зависимой переменной с независимой является отрицательной (обратной).

В таблице 8.3в. представлены результаты вывода остатков . Для того чтобы эти результаты появились в отчете, необходимо при запуске инструмента «Регрессия» активировать чекбокс «Остатки».

При помощи этой части отчета мы можем видеть отклонения каждой точки от построенной линии регрессии. Наибольшее абсолютное значение остатка в нашем случае — 0,778, наименьшее — 0,043. Для лучшей интерпретации этих данных воспользуемся графиком исходных данных и построенной линией регрессии, представленными на рис. 8.3. Как видим, линия регрессии достаточно точно «подогнана» под значения исходных данных.

Следует учитывать, что рассматриваемый пример является достаточно простым и далеко не всегда возможно качественное построение регрессионной прямой линейного вида.

Осталась нерассмотренной задача оценки неизвестных будущих значений зависимой переменной на основании известных значений независимой переменной, т.е. задача прогнозирования.

Имея уравнение регрессии, задача прогнозирования сводится к решению уравнения Y= x*2,305454545+2,694545455 с известными значениями x. Результаты прогнозирования зависимой переменной Y на шесть шагов вперед представлены в таблице 8.4.

Таким образом, в результате использования регрессионного анализа в пакете Microsoft Excel мы:

  • построили уравнение регрессии;
  • установили форму зависимости и направление связи между переменными — положительная линейная регрессия, которая выражается в равномерном росте функции;
  • установили направление связи между переменными;
  • оценили качество полученной регрессионной прямой;
  • смогли увидеть отклонения расчетных данных от данных исходного набора;
  • предсказали будущие значения зависимой переменной.

Если функция регрессии определена, интерпретирована и обоснована, и оценка точности регрессионного анализа соответствует требованиям, можно считать, что построенная модель и прогнозные значения обладают достаточной надежностью.

Прогнозные значения, полученные таким способом, являются средними значениями, которые можно ожидать.

Выводы

В этой части лекции мы рассмотрели основные характеристики описательной статистики и среди них такие понятия, как среднее значение , медиана , максимум , минимум и другие характеристики вариации данных. Также было кратко рассмотрено понятие выбросов . Рассмотренные в лекции характеристики относятся к так называемому исследовательскому анализу данных, его выводы могут относиться не к генеральной совокупности, а лишь к выборке данных. Исследовательский анализ данных используется для получения первичных выводов и формирования гипотез относительно генеральной совокупности. Также были рассмотрены основы корреляционного и регрессионного анализа, их задачи и возможности практического использования.

Читать еще:  Стратегический анализ бизнеса это

Суть регрессионного анализа

Для реализации процедуры Регрессия необходимо: выбрать в меню Сервис команду Анализ данных. В появившемся диалоговом окне Анализ данных в списке Инструменты анализа выбрать строку Регрессия.

Рис.1. Окно «Регрессия»

В появившемся диалоговом окне (рис.1) задать:

Входной интервал Y– диапазон (столбец), содержащий данные со значениями объясняемой переменной;

Входной интервал Х– диапазон (столбцы), содержащий данные с заголовками.

Метки – флажок, который указывает, содержат ли первые элементы отмеченных диапазонов названия переменных (столбцов) или нет;

Константа-ноль– флажок, указывающий на наличие или отсутствие свободного члена в уравнении (а);

Уровень надежности– уровень значимости, (например, 0,05);

Выходной интервал – достаточно указать левую верхнюю ячейку будущего диапазона, в котором будет сохранен отчет по построению модели;

Новый рабочий лист– поставить значок и задать имя нового листа (Отчет – регрессия), в котором будет сохранен отчет.

Если необходимо получить значения и график остатков, а также график подбора (чтобы визуально проверить отличие экспериментальных точек от предсказанных по регрессионной модели), установите соответствующие флажки в диалоговом окне.

Рассмотрим результаты регрессионного анализа (рис. 2, 3).

Рис. 2. Вывод итогов регрессионного анализа

Рис. 3. Вывод остатков и вероятности по результатам регрессионного анализа

Множественный R – коэффициент корреляции

R-квадрат – это коэффициент линейной детерминации. Коэффициент является одной из наиболее эффективных оценок адекватности регрессионной R2модели, мерой качества уравнения регрессии в целом (или, как говорят, мерой качества подгонки регрессионной модели к наблюденным значениям.

Если R-квадрат > 0,95, говорят о высокой точности аппроксимации (модель хорошо описывает явление). Если R-квадрат лежит в диапазоне от 0,8 до 0,95, говорят об удовлетворительной аппроксимации (модель в целом адекватна описываемому явлению). Если R-квадрат 0,05, коэффициент может считаться нулевым, что означает, что соответствующая независимая переменная практически не влияет на зависимую переменную.

В нашем случае оба коэффициента оказались «нулевыми», а значит обе независимые переменные не влияют на модель.

Нижние 95% – Верхние 95% – доверительный интервал для параметра , т.е. с надежностью 0.95 этот коэффициент лежит в данном интервале. Поскольку коэффициент регрессии в исследованиях имеют четкую интерпретацию, то границы доверительного интервала для коэффициента регрессии не должны содержать противоречивых результатов. Так, например, «Доля городского населения, в %» не может лежать в интервале -0,25≥b1≥2,7. Такого рода запись указывает, что истинное значение коэффициента регрессии одновременно содержит положительные и отрицательные величины и даже ноль, чего не может быть.

Предсказанное Y — теоретические (расчетные) значения результативного признака.

Остатки – остатки по модели регрессии.

На основе данных об остатках модели регрессии был построен график остатков (рис. 4) и график подбора – поле корреляции фактических и теоретических (расчетных) значений результативной переменной (рис.5).

Рис. 4. График остатков по значениям признака «Доля городского населения, %»

Рис. 5. График подбора для признаков «Доля городского населения, %» и «Число мобильных телефонов на 100 жителей»

Рассмотрение графиков подбора позволяет предположить, что, возможно, качество модели можно усовершенствовать, исключив данные по Белоруссии как аномальные значения.

§ 2. Суть регрессионного анализа

где X — независимая (объясняющая) переменная (регрессор), Y — зависимая (объясняемая) переменная. При рассмотрении зависимости двух СВ говорят о парной регрессии. Символ M(Yx) означает
условное математическое ожидание (математическое ожидание Y при заданном значении x ).
Зависимость нескольких переменных, выражаемую функцией:

называют множественной регрессией.
Реальные значения зависимой переменной не всегда совпадают с ее условными математическими ожиданиями и могут быть различными при одном и том же значении объясняющей переменной (наборе объясняющих переменных), поэтому фактическая зависимость должна быть дополнена некоторым слагаемым є, которое является СВ.
Рассмотрим основные причины обязательного присутствия в регрессионных моделях случайного фактора (отклонения) є .

  1. Невключение в модель всех объясняющих переменных. Любая регрессионная (в частности, эконометрическая) модель является упрощением реальной ситуации. Последняя всегда представляет собой сложнейшее переплетение различных факторов, многие из которых в модели не учитываются, что порождает отклонение реальных значений зависимой переменной от ее модельных значений.
  2. Неправильный выбор функциональной формы модели. Из-за слабой изученности исследуемого процесса либо из-за его переменчивости может быть неверно подобрана моделирующая его функция. Это, безусловно, скажется на отклонении модели от реальности, что отразится на величине случайного члена. Кроме того, неверным может быть подбор объясняющих переменных.
  3. Агрегирование переменных. Во многих моделях рассматриваются зависимости между факторами, которые сами представляют сложную комбинацию других, более простых переменных. Это может оказаться причиной отклонения реальных значений от модельных.
  4. Ошибки измерений. Какой бы качественной ни была модель, ошибки измерений переменных отразятся на несоответствии модельных значений эмпирическим данным, что также отразится на величине случайного члена.
  5. Ограниченность статистических данных. Зачастую строятся модели, выражаемые непрерывными функциями. Но для этого используется набор данных, имеющих дискретную структуру. Это несоответствие находит свое выражение в случайном отклонении.
  6. Непредсказуемость человеческого фактора. Эта причина может «испортить» самую качественную модель, так как невозможно спрогнозировать поведение каждого индивидуума.

Следовательно, связь между зависимой переменной и объяс- няющей(ими) переменной(ыми) выражается соотношениями:

называемыми регрессионными моделями (уравнениями).
Обсуждение регрессионных моделей в следующих главах поможет глубже изучить данное понятие.
Решение задачи построения качественного уравнения регрессии, соответствующего эмпирическим данным и целям исследования, является достаточно сложным и многоступенчатым процессом. Его можно разбить на три этапа:

  1. выбор формулы уравнения регрессии;
  2. определение параметров выбранного уравнения;
  3. анализ качества уравнения и поверка адекватности уравнения эмпирическим данным, совершенствование уравнения.

Выбор формулы связи переменных (и самих переменных, включаемых в уравнение) называется спецификацией уравнения регрессии. В случае парной регрессии выбор формулы обычно осуществляется по графическому изображению реальных статистических данных в виде точек в декартовой системе координат, которое называется корреляционным полем (диаграммойрассеяния).
В случае множественной регрессии определение подходящего вида зависимости является более сложной задачей.
Вопросы определения параметров уравнения (параметризации) и проверки качества (верификации) уравнения регрессии будут обсуждены ниже.

Ссылка на основную публикацию
Adblock
detector