Sofin-credit.ru

Деньги и работа
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Определение текущей стоимости денежных потоков

Текущая (приведенная) стоимость денежных потоков

Проблема определения текущей стоимости возникает, когда нам известны будущие платежи и необходимо определить текущую сумму денежных средств.

Например: человек собирается купить автомобиль за 500 тыс. руб. Сегодня у него таких денег нет, но он готов положить определенную сумму в банк под 15% годовых, с тем, чтобы через год у него на счете оказалось 500 тыс. руб. Вопрос в том, сколько нужно положить на счет?

Стоимость денег нам известна: 15%, т.е. r=0,15. Срок инвестирования (наращивания) тоже понятен – 1 год, т.е. n = 1. Будущая стоимость FV = 500 тыс. руб.

Записав формулу будущей стоимости, получим: 500 000 = PV (1+0,15), отсюда PV=500: (1-0,15)=434783 руб.

Т.е. для того чтобы получит в конце года 500 тыс. руб. человек должен положить на годовой депозит под 15% 434 738 руб.

Математическая операция, в которой исходя из будущей стоимости находят текущую, называется дисконтированием.По-другому можно сказать, текущая стоимость это дисконтированная стоимость будущего денежного потока. Ее можно вывести из формулы определения будущей стоимости:

PV= FV/ (1+r)ⁿ или PV= FV ;

Где ,

PV и FV это текущая и будущая стоимость соответственно,

r – это ставка дисконтирования,

На фондовом рынке обращаются разнообразные виды ценных бумаг (более подробно мы рассмотрим их позже). Среди них встречаются бумаги, по которым указана получаемая инвестором сумма по истечению срока действия этой ценной бумаги. Примером такой бумаги является вексель (долговая ц.б.). В нем указывается дата его погашения и сумма, которую получит инвестор. Векселя свободно обращаются на финансовом рынке, их можно легко купить и продать. Но важным всегда является вопрос: по какой цене следует приобретать данный вексель? Определить цену векселя, как раз и помогает процедура дисконтирования.

Например, инвестору предлагают купить вексель, по которому через год будет выплачено 10 млн. руб. Пользуясь формулой дисконтирования, определим сегодняшнюю цену векселя:

Для этого нужно знать ставку дисконтирования, в качестве которой берут доходность, которую можно получить на финансовом рынке, вкладывая деньги в какой-нибудь финансовый инструмент с аналогичным уровнем риска (например, банковский депозит). Если у инвестора есть возможность разместить деньги в банке под 15% годовых, то текущую стоимость предлагаемого векселя можно определить как:

PV= 10 млн. * 1/1+0,15 = 8,69 млн. руб.

Процедура дисконтирования применяется очень широко для принятия финансовых решений. Рассмотрим еще один пример, когда инвестору требуется определить первоначальную сумму вклада:

Если через 4 года инвестор хочет получить в банке сумму равную 15000 долл. При рыночных валютных ставках 12% годовых, то какую сумму ему нужно разместить на банковском депозите?

PV = 15000 * (1+0,12)⁴ = 9553 долл.

Для вычисления приведенной (текущей) стоимости, как и в случае с будущей стоимостью пользуются специальными таблицами коэффициентов дисконтирования.

Таблица 1. Приведенная стоимость одной денежной единицы, которая будет получена через n лет (фрагмент таблицы)

Расчет приведенной стоимости (PV) | КАЛЬКУЛЯТОР

Дисконтированная стоимость денежного потока (англ. present value)

Определение и формула

Дисконтированная стоимость: определение и формула

Дисконтированная (приведённая, текущая) стоимость — оценка стоимости (текущий денежный эквивалент) будущего потока платежей исходя из различной стоимости денег, полученных в разные моменты времени (концепция временно́й ценности денег). Денежная сумма, полученная сегодня, обычно имеет более высокую стоимость, чем та же сумма, полученная в будущем. Это связано с тем, что деньги, полученные сегодня, могут принести в будущем доход после их инвестирования. Кроме того, деньги полученные в будущем в условиях инфляции обесцениваются (на ту же сумму в будущем можно приобрести меньшее количество товаров и услуг). Также есть другие факторы, снижающие стоимость будущих платежей. Неравноценность разновременных денежных сумм численно выражается в ставке дисконтирования.

Дисконтированная стоимость некоторой будущей суммы X равна денежной сумме, при инвестировании которой сейчас (с доходностью, равной ставке дисконтирования), в будущем (в тот же момент времени) будет получена сумма X . Дисконтированная стоимость потока платежей равна сумме дисконтированных стоимостей отдельных платежей, входящих в этот поток. Она фактически равна дисконтированной величине будущей стоимости денежного потока (сумма, которая будет получена в будущем, если денежный поток инвестировать в моменты получения платежей под ставку дисконтирования).

Дисконтированная стоимость широко используется в экономике и финансах как инструмент сравнения потоков платежей, получаемых в разные сроки. Модель дисконтированной стоимости позволяет определить, какой объём финансовых вложений готов сделать инвестор для получения данного денежного потока. Дисконтированная стоимость будущего потока платежей является функцией ставки дисконтирования, которая может определяться в зависимости от:

  • доходности альтернативных вложений;
  • стоимости привлечения (заимствования) средств;
  • инфляции;
  • срока, через который ожидается будущий поток платежей;
  • риска, связанного с данным будущим потоком платежей;
  • других факторов.

Показатель дисконтированной стоимости используется в качестве основы для вычисления амортизации финансовых заимствований.

Практическое объяснение: ц енность денежных средств изменяется со временем. 100 рублей, полученные через пять лет, имеют иную (в большинстве случаев, меньшую) ценность чем 100 рублей, которые имеются в наличии. Имеющиеся в наличии денежные средства можно инвестировать в банковский депозит или любой другой инвестиционный инструмент, что обеспечит процентный доход . То есть 100 руб. сегодня, дают 100 руб. плюс процентный доход через пять лет. Кроме того, на имеющиеся в наличии 100 руб. можно приобрести товар, который через пять лет будет иметь более высокую цену вследствие инфляции. Следовательно 100 руб. через пять лет не позволят приобрести тот же товар. В данном примере показатель дисконтированной стоимости позволяет вычислить сколько на сегодняшний день стоят 100 руб., которые будут получены через пять лет.

Формула для расчета дисконтированного денежного потока:

FV — будущая стоимость;
PV — текущая стоимость;
r — ставка дисконтирования;
n — количество лет.

Чем дольше срок получения инвестиции и чем выше ставка дисконтирования, тем меньше текущая стоимость.

Например, планируемые к получению 1000 рублей через 1 год инвестирования при ставке дисконтирования 15% эквивалентны сегодняшним 869,57 рублям; для планируемых к получению 1000 рублей через 2 года инвестирования при ставке дисконтирования 15% эквивалентны сегодняшним 756,14 рублям; для планируемых к получению 1000 рублей через 3 года инвестирования при ставке дисконтирования 15% эквивалентны сегодняшним 657,52 рублям.

В данном примере величина 869,57 рублей является текущей стоимостью величины 1000 рублей, полученных от инвестиции сроком на 1 год при ставке дисконтирования 15%.

На тему этой методики существуют примеры задач на приведенную стоимость с решениями.

CFA — Как рассчитывать текущую (приведенную) стоимость денежного потока (PV)?

Рассмотрим порядок расчета текущей или приведенной стоимости единичного денежного потока, с поясняющими примерами, в рамках изучения количественных методов финансового анализа по программе CFA.

Фактор будущей стоимости связывает сегодняшнюю текущую (приведенную) стоимость (PV, англ. ‘present value’) денежного потока с его будущей стоимостью (FV, англ. ‘future value’). Этот коэффициент позволяет рассчитать как FV, так и PV.

Например, 5-процентная ставка приносит будущий доход в размере $105 за 1 год.

Какой должна быть текущая (первоначальная) сумма, вложенная под 5%, чтобы она выросла до $105 через 1 год?

Ответ: $100 представляют собой текущую стоимость (PV) для будущей суммы (FV) в размере $105, которая должна быть получена через 1 год, при ставке вклада 5%.

Читать еще:  Расчет расходов денежных средств

Используя будущий денежный поток, который должен быть получен в течение N периодов, и процентную ставку за период r, мы можем преобразовать формулу (2) будущей стоимости денежного потока следующим образом:

FV N = PV * (1 + r) N

PV = FVN * [1 / (1 + r) N ] (формула 8)

Из формулы 8 видно, что фактор текущей стоимости (англ. ‘present value factor’), (1 + r) -N является обратной величиной фактора будущей стоимости (1 + r) N .

Пример расчета текущей стоимости денежного потока.

Страховая компания выпустила гарантированный инвестиционный сертификат (GIC), который гарантирует выплату $100 000 в течение 6 лет с 8-процентной прибылью.

Какую сумму страховщик должен инвестировать сегодня, чтобы через 6 лет обеспечить выплату обещанной суммы по сертификату?

Решение:

Мы можем применить формулу 8, чтобы найти текущую (приведенную) стоимость, используя следующие данные:

FVN = $100,000
r = 8% = 0.08
N = 6

PV = FVN (1 + r) -N
= $100,000 * [1 / (1.0 8) 6 ]
= $100,000 * (0.6301696) = $63,016.96

Можно сказать, что сегодня $63 016,96 при процентной ставке 8% эквивалентны $100 000, которые будут получены через 6 лет.

Дисконтирование сегодняшней суммы $100 000 делает будущую сумму в размере $100 000 эквивалентом $63 016,96, с учетом временной стоимости денег (TVM).

Как показывает временная линия на рисунке ниже, $100 000 дисконтированы в течение 6 полных периодов.

Пример прогнозирования текущей стоимости денежного потока.

Предположим, что у вас есть ликвидный финансовый актив, который принесет вам $100 000 через 10 лет от текущей даты.

Ваша дочь планирует поступить в колледж через четыре года, и вы хотите знать, какова будет текущая (приведенная) стоимость актива к этому моменту.

С учетом 8% ставки дисконтирования, какова будет стоимость актива через 4 года от текущей даты?

Решение:

Стоимость актива ($100 000) — это текущая стоимость через 10 лет. При t = 4 эта сумма будет получена 6 лет спустя — см. рисунок ниже.

С помощью этой информации вы можете вычислить стоимость актива через 4 года от текущей даты, используя формулу 8:

FVN = $100,000
r = 8% = 0.08
N = 6

PV = FVN (1 + r) -N
= $100,000 * [1 / (1.08) 6 ]
= $100,000 * (0.6301696)
= $63,016.96

Временная линия на рисунке выше показывает будущий платеж в размере $100 000, который должен быть получен при t = 10. На временной шкале также показана стоимость денежного потока при t = 4 и при t = 0.

По сравнению с суммой при t = 10, сумма при t = 4 представляет собой прогнозируемую текущую стоимость, а сумма при t = 0 является текущей приведенной стоимостью (на сегодняшний день).

Задачи, требующие вычисления текущей стоимости (PV) требуют определения фактора текущей стоимости
(1 + r) -N .

Текущая стоимость зависит от процентной ставки и количества периодов начисления процентов следующим образом:

  • При заданной ставке дисконтирования, чем дальше в будущем будет получена сумма, тем меньше будет текущая стоимость (PV) этой суммы.
  • Для одного и того же момента времени, с ростом ставки дисконтирования уменьшается текущая стоимость будущей суммы.

Расчет текущей (приведенной) стоимости с промежуточным начислением процентов.

Напомним, что проценты могут выплачиваться раз в полгода, ежеквартально, ежемесячно или даже ежедневно.

Для расчета процентных платежей, производимых более 1 раза в год, мы можем изменить формулу текущей стоимости (8).

Напомним, что rS — котируемая (заявленная) процентная ставка и она равна периодической процентной ставке, умноженной на количество периодов начисления в каждом году.

В целом, если в году есть более 1 промежуточного периода начисления, мы можем выразить формулу расчета текущей стоимости (PV) как:

m = количество периодов начисления в году,
rS = заявленная годовая процентная ставка,
N = количество лет.

Формула 9 очень похожа на формулу 8.

Как мы уже отмечали, фактор текущей стоимости и фактор будущей стоимости являются обратными значениями по отношению друг к другу. И добавление в формулу частоты начисления процентов не влияет на эту взаимозависимость между двумя факторами.

Единственное различие заключается в использовании периодической процентной ставки и соответствующего количества периодов начисления.

Следующий пример иллюстрирует формулу 9.

Пример расчета текущей (приведенной) стоимость при ежемесячном начислении процентов.

Менеджер канадского пенсионного фонда знает, что фонд должен выполнить единовременный платеж в размере $5 млн. через 10 лет. Она планирует сегодня инвестировать некоторую сумму в гарантированный инвестиционный сертификат (GIC), чтобы эта инвестиция выросла до необходимой суммы в $5 млн.

Текущая процентная ставка по GIC составляет 6 процентов в год, с ежемесячным начислением процентов.

Сколько она должна сегодня инвестировать в GIC?

Решение:

Используя формулу 9, чтобы находим требуемую текущую стоимость:

FVN = $5,000,000
rS = 6% = 0.06
m = 12
rS / m = 0.06/12 = 0.005
N = 10
mN = 12*(10) = 120

PV = FVN * (1 + rS/m) -mN
= $5,000,000 * (1.005)-120
= $5,000,000 * (0.549633)
= $2,748,163.67

При применении формулы 9 мы используем периодическую ставку (в данном случае, месячную ставку) и соответствующее количество периодов с ежемесячным начислением процентов (в данном случае 10 лет ежемесячных начислений или 120 периодов).

Дисконтирование денежных потоков (DCF). Формула. Расчет в Excel

В статье подробно расскажем про дисконтирование денежных потоков, формулу расчета и анализа в Excel.

Дисконтирование денежных потоков. Определение

Дисконтирование денежных потоков (англ. Discounted cash flow, DCF, дисконтированная стоимость) – это приведение стоимости будущих (ожидаемых) денежных платежей к текущему моменту времени. Дисконтирование денежных потоков основывается на важном экономическом законе убывающей стоимости денег. Другими словами, со временем деньги теряют свою стоимость по сравнению с текущей, поэтому необходимо за точку отсчета взять текущий момент оценки и все будущие денежные поступления (прибыли/убытки) привести к настоящему времени. Для этих целей используют коэффициент дисконтирования.

Как рассчитать коэффициент дисконтирования?

Коэффициент дисконтирования используется для приведения будущих доходов к текущей стоимости за счет перемножения коэффициента дисконтирования и потоков платежей. Ниже показана формула расчета коэффициента дисконтирования:

где: r – ставка дисконтирования, i – номер временного периода.

Дисконтирование денежных потоков. Формула расчета

DCF (Discounted cash flow) – дисконтированный денежный поток;

CF (Cash Flow) – денежный поток в период времени I;

r – ставка дисконтирования (норма дохода);

n – количество временных периодов, по которым появляются денежные потоки.

Ключевым элементов в формуле дисконтирования денежных потоков является ставка дисконтирования. Ставка дисконтирования показывает, какую норму прибыли следует ожидать инвестору при вложении в тот или иной инвестиционный проект. Ставка дисконтирования использует множество факторов, которые зависят от объекта оценки, и может в себя включать: инфляционную составляющую, доходность по безрисковым активам, дополнительную норму прибыли за риск, ставку рефинансирования, средневзвешенную стоимость капитала, процент по банковским вкладам и т.д.

Расчет нормы дохода (r) для дисконтирования денежных потоков

Существует достаточно много различных способов и методов оценки ставки дисконтирования (нормы дохода) в инвестиционном анализе. Рассмотрим более подробно достоинства и недостатки некоторых методов расчета нормы доходности. Данный анализ представлен в таблице ниже.

Методы оценки ставки дисконтирования

Достоинства

Недостатки

Вы можете более подробно узнать про подходы в расчете ставки дисконтирования в статье «Ставка дисконтирования.10 современных методов оценки».

Пример расчета дисконтированного денежного потока в Excel

Для того чтобы рассчитать дисконтированные денежные потоки необходимо по выбранному временному периоду (в нашем случае годовые интервалы) расписать подробно все ожидаемые положительные и отрицательные денежные платежи (CI – Cash Inflow, CO – Cash Outflow). За денежные потоки в оценочной практике берут следующие платежи:

  • Чистый операционный доход;
  • Чистый поток наличности за исключением затрат на эксплуатацию, земельного налога и реконструирования объекта;
  • Облагаемая налогом прибыль.
Читать еще:  Порча денежных знаков статья

В отечественной практике, как правило, используют период 3-5 лет, в иностранной практике период оценки составляет 5-10 лет. Введенные данные являются базой для дальнейшего расчета. На рисунке ниже показан пример ввода первоначальных данных в Excel.

Дисконтированный денежный поток (DCF) расчет в Excel

На следующем этапе рассчитывается денежный поток по каждому из временных периодов (колонка D). Одной из ключевых задач оценки денежных потоков является расчет ставки дисконтирования, в нашем случае она составляет 25%. И была получена по следующей формуле:

Ставка дисконтирования = Безрисковая ставка + Премия за риск

За безрисковую ставку была взята ключевая ставка ЦБ РФ. Ключевая ставка ЦБ РФ на настоящий момент составляет 15% и премия за риски (производственные, технологические, инновационные и др.) была рассчитана экспертно на уровне 10%. Ключевая ставка отражает доходность по безрисковому активу, а премия за риск показывает дополнительную норму прибыли на существующие риски проекта.

Более подробно узнать про расчет безрисковой ставки можно в следующей статье: «Безрисковая ставка доходности. 5 современных методов расчета»

После необходимо привести полученные денежные потоки к первоначальному периоду, то есть умножить их на коэффициент дисконтирования. В результате сумма всех дисконтированных денежных потоков даст дисконтированную стоимость инвестиционного объекта. Формулы расчета будут следующие:

Дисконтированный денежный поток (DCF) = D6/(1+$C$3)^A6

Суммарный дисконтированный денежный поток (DCF) = СУММ(E6:E14)

Дисконтирование денежных потоков, пример оценки в Excel

В результате расчета мы получили дисконтированную стоимость всех денежных потоков (DCF) равную 150 981 руб. Данный денежный поток имеет положительное значение, это свидетельствует о возможности дальнейшего анализа. При проведении инвестиционного анализа необходимо сопоставить итоговые значения дисконтированного денежного потока по различным альтернативным проектам, это позволит проранжировать их по степени привлекательности и эффективности в создании стоимости.

Методы инвестиционного анализа, использующие дисконтированные денежные потоки

Следует заметить, что дисконтированный денежный поток (DCF) в своей формуле расчета сильно походит на чистый дисконтированный доход (NPV). Главное отличие заключается во включении первоначальных инвестиционных затрат в формулу NPV.

Дисконтированный денежный поток (DCF) используется во многих методах оценки эффективности инвестиционных проектов. Из-за того, что данные методы используют дисконтирование денежных потоков, их называют динамическими.

  • Динамические методы оценки инвестиционных проектов
    • Чистый дисконтированный доход (NPV,NetPresentValue)
    • Внутренняя норма прибыли (IRR, Internal Rate of Return)
    • Индекс прибыльности (PI, Profitability index)
    • Эквивалент ежегодной ренты (NUS, Net Uniform Series)
    • Чистая норма доходности (NRR, Net Rate of Return)
    • Чистая будущая стоимость (NFV,NetFutureValue)
    • Дисконтированный срок окупаемости (DPP,DiscountedPayback Period)

Более подробно узнать про методы расчета эффективности инвестиционных проектов вы можете в статье «6 методов оценки эффективности инвестиций в Excel. Пример расчета NPV, PP, DPP, IRR, ARR, PI».

Помимо только дисконтирования денежных потоков существую более сложные методы, которые в дополнение учитывают реинвестирование денежных платежей.

  • Модифицированная чистая норма рентабельности (MNPV, Modified Net Rate of Return)
  • Модифицированная норма прибыли (MIRR, Modified Internal Rate of Return)
  • Модифицированный чистый дисконтированный доход (MNPV,ModifiedPresentValue)

Достоинства и недостатки показателя DCF дисконтирования денежных потоков

+) Использование ставки дисконтирования является несомненным достоинством данного метода, так как позволяет привести будущие платежи к текущей стоимости и учесть возможные факторы риска при оценке инвестиционной привлекательности проекта.

-) К недостаткам можно отнести сложность прогнозирования будущих денежных потоков по инвестиционному проекту. К тому же трудно отразить в ставке дисконтирования изменения внешней среды.

Резюме

Дисконтирование денежных потоков является основой для расчета многих коэффициентов оценки инвестиционной привлекательности проекта. Мы разобрали на примере алгоритм расчета дисконтированных денежных потоков в Excel, их существующие достоинства и недостатки. С вами был Иван Жданов, спасибо за внимание.

Приведенная стоимость денежного потока: что это, как рассчитывается

Инвестирование – направление финансовой деятельности, которое приносит прибыль или убыток. Все зависит от многих факторов и рисков, которые несет в себе такая инвестиция. Поэтому существуют направления инвестиционного анализа, где рассчитывается и анализируется множество показателей, в том числе и приведенная стоимость потока.

Денежный поток: сущность, виды

Инвестиционный проект оценивается по многим показателям, но главный из них – это окупаемость и рентабельность инвестиционных средств. Также при инвестировании каждый аналитик оценивает входящие и исходящие денежные потоки, которые помогают в итоге оценить приток или отток по истечению действия проекта.

Денежный поток обозначается в теории и на практике CF. Это сокращение, полностью на англ. языке – cash flow. Это поступления в рамках проекта денежных ресурсов, их эквивалентов, а также понесенные расходов за время действия инвестиции. При этом не все знают, что деятельность по вложению, уже являясь инвестиционной, делится на три главных подвида:

  1. Поток от инвестиционных направлений деятельности. Как правило, сюда включают полученные или потраченные средства в результате приобретения или реализации основных средств и других нематериальных активов, которые продаются или покупаются.
  2. Поток от финансового направления. Включает в себя все потоки, которые связаны с привлечением кредитных средств; с уплатой процентов по ним, приобретением и продажей ценных бумаг и т.п.
  3. Поток от операционной сферы деятельности. Включает доход от предоставления услуг, продажи готовой продукции; расходы на материалы, запасы и другие составляющие, формирующие себестоимость.

Как правило, движение средств от операционной деятельности является главным на предприятии, поскольку связано непосредственно с его хозяйственной деятельностью.

Входящий и исходящий денежные потоки

Денежный поток – основа для расчета инвестиционной привлекательности самого капиталовложения и поэтому на каждом этапе анализа этого показателя учитываются такие составляющие:

  1. Сколько поступлений было зачислено на счет такого проекта.
  2. Сколько расходов было понесено в результате реализации.
  3. Какое сальдо инвестиционного баланса: положительное или отрицательное.

На первоначальном этапе внедрения инвестиции потоки преимущественно исходящие, а сальдо имеет отрицательный характер. Для расчета сальдо нужно четко разделять, что входит во входящие и исходящие потоки.

Что включает в себя входящий поток денежных ресурсов:

Входящий и исходящий

  • Доход от продажи продукции, товаров и услуг
  • Получение кредитных средств от банка и других кредиторов
  • Эмиссия и продажа ценных бумаг
  • Другие операционные доходы
  • Доход от продажи или сдачи в аренду ОС, других нематериальных активов
  • Прибыль от вложений в ценные бумаги

Что включает в себя исходящий денежный поток:

  • Расходы для приобретения необходимых материалов, сырья, запасов, полуфабрикатов и т.д.
  • Затраты на заработную плату сотрудников
  • Покупка основных средств, производственных мощностей
  • Средства, вложенные в оборотные средства
  • Процентные платежи по кредиту
  • Другие расходы деятельности

По итогам таких показателей может быть рассчитано сальдо денежного движения ресурсов, которое покажет результат от вложения средств в дело.

Приведенная стоимость: что это

Поскольку мы изучаем такое понятие, как приведенная стоимость самого денежного потока, то правильно изучить не только сущность потока денежного, но также и сущность понятия «приведенная стоимость».

Приведенная стоимость позволяет узнать текущую стоимость инвестиций, то есть то, какую прибыль мы получим в будущем, но с условием современного курса. Приведенная стоимость позволяет определить, сколько необходимо вложить средств на период под процент, чтобы в будущем получить определенную сумму средств. При этом в расчете приведенной стоимости учитываются сложные, а не простые проценты.

Читать еще:  Можно ли компенсировать отпуск деньгами

Для чего нужен расчет NPV

Если имеют в виду приведенную стоимость, то подразумевают только чистую стоимость. По-другому такое понятие в мировой литературе обозначают NPV. Полностью это звучит как Net Present Value. Такое понятие подразумевает под собой реальную на сегодняшний день сумму денежных ресурсов, которые необходимы для получения в ближайшее время суммы, равной доходу от реализации данной инвестиции.

На простом языке: при депозитном проценте в 10% 100 рублей на сегодня уже к концу года равны 110 рублей. В результате такой пример о депозите равнозначен рентабельности инвестиционного проекта.

Если же инвестиция подразумевает вложения не на один год, а на несколько лет, тогда необходимо рассчитывать приведенную стоимость не на конец всего периода, а на конец каждого отчетного года. Нужно определять какая сумма будет возвращена инвестору по итогу каждого года в сравнении с вложенными в этот год инвестициями.

ЧДД: это тоже, что и NPV?

Следует также учесть, что в российской литературе часто можно встретить такое сокращение как ЧДД – это тоже самое и расшифровывается просто не с английского, а с русского языка, – чистый дисконтированный доход.

По итогу изучения можно сделать вывод о том, что ЧДД – это тот итог по всем осуществленным денежным потокам, который рассчитан с учетом современного периода времени. Приведенная стоимость – это всегда противоположный показатель будущей стоимости, которую так часто берут за основу при подсчете инвестиционной привлекательности.

Алгоритм и формула расчета ЧДД

NPV = сумма результатов за каждый год капиталовложения CF / ((1 + r) в степени t),

где обозначения имеют следующий смысл:

Расчет денежных потоков

  • CF – сальдо потока денежного, рассчитанного как разница между тем, что предприятие получило, и тем, что потратило
  • t – количество лет, за который производится расчет
  • r – ставка дисконтирования инвестиции
  • n – продолжительность внедрения самого инвестиционного проекта

При изучении денежных потоков и их приведенной стоимости очень важно подойти непосредственно к выбору ставки дисконтирования. При осуществлении ее выбора необходимо учитывать не только особенности теории стоимости денег во времени, но и учитывать в обязательном порядке риск неопределенности. Лучше в качестве ставки дисконтирования выбирать именно средневзвешенную стоимость капитала, вложенного в инвестиционный проект. По итогу такого выбора существует закономерность: чем будут больше риски неопределенности, тем больше будет сама ставка, и наоборот.

ЧДД проектов: какой выбрать

Есть два инвестиционных проекта с инвестиционными вложениями в 10 тыс. рублей. Известны денежные потоки по каждому проекту по годам. Проект А: 5, 4, 3, 1. Проект Б имеет такие денежные потоки: 1, 3, 4, 6. Ставка дисконтирования 10%. Какой проект лучше?

Для начала необходимо рассчитать ЧДД для проекта А за каждый год:

  • 5 / (1 + 0,1) в 1-й степени = 4545,5
  • 4 / (1 + 0,1) во 2-й степени = 3305,8
  • 3 / (1 + 0,1) в 3-й степени = 2253,9
  • 1 / (1 + 0,1) в 4-й степени = 683,0

По результатам расчета ЧДД потока по проекту инвестирования А за 4-е года составит: 10788,2 (все ЧДД за четыре года суммируются: 4545,5 +…+ 683). Если отнять первоначальные капиталовложения, то ЧДД = 10788,2 – 10000 = 788,2.

По аналогии рассчитывается ЧДД по проекту Б, где она составит 491,5.

Вывод: вкладывать деньги можно в оба проекта, но выгоднее в проект А.

Анализ полученных результатов

Таким образом, NPV – это тот способ изучения инвестиционной доходности проекта, позволяющий уже сегодня понять, сколько денег необходимо вложить, и какая от них будет отдача. Также можно понять, за сколько окупится проект.

Как проводить анализ результатов

Реализация метода NPV базируется на таких основах:

  1. Дисконтирование денежных потоков происходит в целом по стоимости вложенного в капитал. Перед проведением расчета необходимо всегда найти приведенный к текущему временному периоду размер как входящих, так и исходящих потоков, и только после этого осуществить расчет ЧДД.
  2. Все значения по дисконтированным денежным потокам всегда необходимо складывать, чтобы потом проводить оценку полученного результата.
  3. Проводится оценка полученного потока. При полученном NPV больше 0 инвестиционный проект можно реализовать в действительность. Если же такая стоимость равна 0, тогда все на усмотрение инвестора: проект может быть принят или отклонен. Связано это с тем, что ЧДД = 0 свидетельствует о том, что потоки покроют инвестированный капитал и может даже дадут получить небольшою норму прибыли, но больше никаких выгод для инвестора не будет. Стоимость акций проекта не изменится в будущем.

Критерии отбора

По результатам изучения вопроса критерии отбора инвестиционного проекта можно представить так:

  • Если брать во внимание любой инвестиционный проект, то при размере чистой приведенной стоимости больше нуля, проект безоговорочно принимается. Если такой показатель при расчете является отрицательным, тогда проект однозначно отклоняется. При нулевом значении инвестору все равно, будет ли проект воплощен в реальность или нет.
  • Если на рассмотрении инвестора находятся одновременно несколько проектов, то из перечня выбирается тот инвестиционный проект, который имеет наибольшую приведенную стоимость, то есть применяется прямолинейный метод отбора.
  • Если на рассмотрении очень много проектов, все из которых принимаются к реализации инвестором, то в случае получения отрицательного ЧДД, проект должен быть в обязательном порядке отклонен.

Плюсы и минусы метода

Главным преимуществом расчета ЧДД является то, что данная методика позволяет аналитику уже сейчас оценить ту стоимость, которая будет дополнительно создана в будущем, но с учетом современных реалий.

Это позволяет инвестору понимать ситуацию и принимать взвешенное решение. Но нельзя полностью сказать, что данный метод не имеет недостатков, они есть.

Среди таких спорных вопросов можно выделить следующие:

  1. Неправильная оценка ставки дисконтирования, ее чувствительность к изменениям. Расчеты по приведенной стоимости проводятся исходя из того, что все вложения будут реинвестированы по применяемой ставке дисконтирования. Но это абсолютно невозможно предугадать на все 100%. Проценты постоянно меняются на финансовом рынке, и поэтому та ставка, которая применяется, не факт, что не изменится в будущем.
  2. Ограничение сроков реализации проекты. Инвестиции могут быть долгосрочными, когда в перспективе невозможно оценить денежные потоки. И приведенная стоимость может быть отрицательной на момент расчета или на момент запланированного конца проекта, а фактически состояние дел изменится уже через год после оценочного периода.
  3. Управленческие решения. Проект оценивается на конкретный период, но никто не оценивает того факта, что при обстоятельствах и ситуации на рынке топ-менеджеры могут внедрять креативные решения и изменять результаты инвестирования. Реакция управленца может очень сильно изменить величину всех потоков.

Каждый инвестор использует разные методики для осуществления правильного выбора проекта, оценки его стоимости, рентабельности и т.д. Потоки денежных ресурсов являются основополагающим критерием при подсчете, и это неоспоримый факт. Приведенная стоимость помогает оценить состояние потоков будущих, что важно в реалиях капитализации процентов.

Конечно, метод не лишен недостатков, но каждый сам должен принимать решения, какой метод использовать.

Заметили ошибку? Выделите ее и нажмите Ctrl+Enter, чтобы сообщить нам.

Ссылка на основную публикацию
Adblock
detector